A Symmetric FBF Method for Solving Monotone Inclusions
نویسندگان
چکیده
منابع مشابه
Global Convergence of a Closed-Loop Regularized Newton Method for Solving Monotone Inclusions in Hilbert Spaces
We analyze the global convergence properties of some variants of regularized continuous Newton methods for convex optimization and monotone inclusions in Hilbert spaces. The regularization term is of LevenbergMarquardt type and acts in an open-loop or closed-loop form. In the open-loop case the regularization term may be of bounded variation.
متن کاملA Continuous Dynamical Newton-Like Approach to Solving Monotone Inclusions
We introduce non-autonomous continuous dynamical systems which are linked to the Newton and Levenberg-Marquardt methods. They aim at solving inclusions governed by maximal monotone operators in Hilbert spaces. Relying on the Minty representation of maximal monotone operators as lipschitzian manifolds, we show that these dynamics can be formulated as first-order in time differential systems, whi...
متن کاملA Parallel Splitting Method for Coupled Monotone Inclusions
A parallel splitting method is proposed for solving systems of coupled monotone inclusions in Hilbert spaces, and its convergence is established under the assumption that solutions exist. Unlike existing alternating algorithms, which are limited to two variables and linear coupling, our parallel method can handle an arbitrary number of variables as well as nonlinear coupling schemes. The breadt...
متن کاملSolving monotone inclusions with linear multi-step methods
In this paper a new class of proximal-like algorithms for solving monotone inclusions of the form T (x) 3 0 is derived. It is obtained by applying linear multi-step methods (LMM) of numerical integration in order to solve the differential inclusion ẋ(t) ∈ −T (x(t)), which can be viewed as a generalization of the steepest decent method for a convex function. It is proved that under suitable cond...
متن کاملSolving Monotone Inclusions via Compositions of Nonexpansive Averaged Operators
A unified fixed point theoretic framework is proposed to investigate the asymptotic behavior of algorithms for finding solutions to monotone inclusion problems. The basic iterative scheme under consideration involves nonstationary compositions of perturbed averaged nonexpansive operators. The analysis covers proximal methods for common zero problems as well as various splitting methods for find...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12091456